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1. Linear Algebra

1.1. Vector Spaces .

Definition 1. A vector space over R is a set V with operations

+ : V × V → V

· : R× V → V

satisfying for all x, y, z ∈ V , a, b ∈ R
• x+ y = y + x
• x+ (y + z) = (x+ y) + z
• There exists a unique element 0 ∈ V with that property that 0 + x = x.
• there is a unique element −x ∈ V such that x+ (−x) = 0.
• 1 · x = x
• (ab) · x = a · (b · x)
• a · (x+ y) = a · x+ a · y
• (a+ b) · x = a · x+ b · x

Definition 2. A linear subspace of a vector space V , is a subset W ⊂ V which is closed under addition
and multiplication, i.e. for all w1, w2 ∈ W and a ∈ R, w1 + w2 ∈ W and aw1 ∈ W . Equivalently, it is a
subset W ⊂ V which is itself a vector space under the same operations +, · as V .

Definition 3. A set of vectors {e1, e2 . . . , en} ⊂ V is called linearly independent if the linear equation

c1e1 + c2e2 + . . . cnen = 0

where c1, . . . , cn ∈ R has a unique solution c1 = c2 = · · · = cn = 0. Equivalently, a set {e1, e2 . . . , en} is
linearly independent if none of the vectors ei is a linear combination of the others.

Definition 4. Linear span of a set of vector {e1, . . . , en} ⊂ V is the set of vector w of the form

w = c1e1 + · · ·+ cnee

with c1, . . . , cn ∈ R. In words, it’s the set of vectors expressible as a linear combination of vectors
e1, . . . , en.

Definition 5. The dimension of a vector space V is the least number n such that there are n vectors
{e1, . . . , en} ⊂ V which span V .

Theorem 6. Let V be a vector space. The following are equivalent
• The dimension of V is n.
• The maximal number of linearly independent vectors in V is n.
• There exists a linearly independent set of vectors {e1, . . . , en} ⊂ V which spans V .
• Any set {e1, . . . , en} ⊂ V of linearly independent vectors spans V .

Definition 7. Let V be a vector space of dimension n. A set {e1, . . . , en} of linearly independent vectors
is called a basis of V .

Theorem 8. Let V be a vector space and {e1, . . . , en} be a basis of V . Then for any vector v ∈ V there
are unique c1, . . . , cn ∈ R such that

v = c1e1 + · · ·+ cnen.

Example 9. The most important example to understand is the vector space

V =



x1

x2
...
xn

 |xi ∈ R
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which is denoted Rn. The set {e1, . . . , en} where

ei =



0
...
0
1
0
...
0


←− i’th row

is a basis of Rn. Indeed, {e1, . . . , en} is linearly independent since

c1e1 + · · ·+ cnen =

c1
...
cn

 = 0 =

0
...
0



if and only if c1 = · · · = cn = 0. Also, {e1, . . . , en} spans Rn since for any v =


x1

x2
...
xn

, we have

v = x1e1 + · · ·+ xnen.

In particular, the dimension of Rn is n. A set of vectors {f1, . . . , fm} ⊂ Rn where fi =


f1i

f2i
...
fni

 is linearly

independent if the equation
c1f1 + . . . cmfm = 0

has a unique solution for c1, . . . , cm. The left hand side is
c1f11 + c2f12 · · ·+ cmf1m

c1f21 + c2f22 + · · ·+ cmf2m
...

c1fn1 + c2fn2 + . . . cmfnm

 =


f11 f12 . . . f1m

f21 f22 . . . f2m
... . . . . . . ...
fn1 fn2 . . . fnm



c1

c2
...
cm

 .

If we denote the matrix


f11 f12 . . . f1m

f21 f22 . . . f2m
... . . . . . . ...
fn1 fn2 . . . fnm

 by F , then the set {f1, . . . , fm} is linearly independent

if and only if the system of equations

F


c1

c2
...
cm

 = 0

has a unique solution.

For example the set of vectors
{(

2
3

)
,

(
1
3

)}
⊂ R2 are linearly independent since if

c1

(
2
3

)
+ c2

(
1
3

)
= 0



FINAL DIFFERENTIAL EQUATIONS SUMMARY 4

then

2c1 + c2 = 0

3c1 + 3c2 = 0.

From the second equation we get c1 = −c2 and plugging it into first equation we get −2c2 + c2 = 0

which implies c2 = c1 = 0. On the other hand, the set
{(

1
3

)
,

(
2
6

)}
is linearly dependent since

2

(
1
3

)
−
(

2
6

)
= 0.

The subset

{


x1

x2
...
xn

 |3x1 + 2x2 = 0}

is a linear subspace of Rn while the subspaces

{


x1

x2
...
xn

 |3x1 + 2x2 = 3},

{


x1

x2
...
xn

 |3x2
1 + 2x2 = 0}

are not linear subspaces.

1.2. Matrices. An n×m matrix is a collection of nm numbers arranged into n rows and m columns.
Given a matrix A, we denote the entry in the i’th row and j’th column by Aij.

Definition 10. Given an n×m matrix

A =

a11 . . . a1m
... . . . ...
an1 . . . anm


and an n′ ×m′ matrix

B =

 b11 . . . b1m′

... . . . ...
bn′1 . . . bn′m′

 ,

the product AB is defined only if m = n′ in which case AB is a n×m′ matrix with entries

{AB}ij =
m∑
k=1

aikbkj.

Pictorially, {AB}ij is the scalar product of i’th row of A and j’th column of B.
a11 . . . a1m
... . . . ...
ai1 . . . aim
... . . . ...
an1 . . . anm


 b11 . . . b1j . . . b1m′

... . . . . . .
. . . ...

bn′1 . . . bn′j . . . bn′m′
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Of particular importance is the case where B is a m× 1 matrix, or in other words a column vector of
height m, or an element of Rm. In that case AB is a column vector of height n. Pictorially In particular,

Figure 1.1.

we can think of a n×m matrix as a transformation that sends elements of Rm to elements of Rn.
Matrix multiplication can be used to concisely express a system of linear equations. In particular,a11 . . . a1m

... . . . ...
an1 . . . anm

x1
...
xm

 =

b1
...
bn


is a short hand for the following system of equations

a11x1 + a12x2 + · · ·+ a1mxm = b1

... =
...

an1x1 + an2x2 + · · ·+ anmxm = bn.

1.3. Determinants.

Definition 11. The determinant of a n× n matrix A is defined by

detA =
∑
j1,...,jn

εj1...jnA1j1A2j2 . . . Anjn

where the sum is over permutation, i.e. jk 6= jl if k 6= l, and εj1...jn is the sign of the permutation.
For n = 2, 3 we have

det

(
a b
c d

)
= ad− bc

det

a b c
d e f
g h i

 = aei+ bfg + cdh− afh− bdi− ceg.

For n ≥ 4, the exact formula becomes cumbersome. There are two methods for simplifying the compu-
tation of determinant: row reduction and expansion with respect to a row or a column.

Row/Column expansion: Denote by A(i|j) the matrix one obtains from A by removing i’th row and
j’th column. Then for a fixed k we have

detA =
n∑
l=1

(−1)l+kAlk detA(l|k) =
n∑
l=1

(−1)l+kAkl detA(k|l)

where the expression
∑n

l=1(−1)l+kAlk detA(l|k) corresponds to expansion with respect to k’th column
and the expression

∑n
l=1(−1)l+kAkl detA(k|l) corresponds to expansion with respect to k’th row. As an

example, we have

det

1 2 3
4 5 3
5 4 2

 = 1 det

(
5 3
4 2

)
− 4 det

(
2 3
4 2

)
+ 5 det

(
2 3
5 3

)
.
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Row reduction. We use the following properties of the determinant function
• If you interchange two rows(columns), the value of the determinant changes sign
• If you add a multiple of a row(column) to another row(column) then determinant does not
change
• If you multiply any row(column) by a constant, the determinant is multiplies by the same
constant

• det


a11 ∗ ∗ ∗
0 a22 ∗ ∗
0 0

. . . ∗
0 0 0 ann

 = a11a22 . . . ann

As an example we have

det

1 0 2
2 1 4
3 2 2

 = det

1 0 2
0 1 0
0 2 −4

 = det

1 0 2
0 1 0
0 0 −4

 = −4

1.4. Matrix Inverse.

Definition 12. The inverse of a n× n matrix A is another matrix, which we denote A−1 such that

A−1A = AA−1 = I

where

I =

1 0 0

0
. . . 0

0 0 1


is called the identity matrix. (Note that AI = IA = A for all n× n matrices A)

Not all matrices are invertible, but if A is invertible, then the inverse A−1 is unique.

Theorem 13. A matrix A is invertible if and only if detA 6= 0.

There is an explicit formula for the inverse of a matrix. Let adj(A) be the matrix defined by

adj(A)ij = (−1)i+j detA(j|i)

where A(j|i) is defined in subsection 1.3. Then

A−1 =
1

detA
adj(A).

As one might notice, using this formula requires computing a lot of determinants.
Another way to find an inverse of a matrix is to find a sequence of row operations that transforms the

matrix A into the identity matrix and then apply the same row operations to the identity matrix. This
works since “applying a sequence of row operations” corresponds to multiplication of A by some matrix
B on the left. If the row operations transform A into I, then BA = I (hence B = A−1) and applying
them to the identity matrix we get BI = B. In practice we apply the row operation to A and I at the

same time. As an example consider the problem of finding A−1 where A =

(
2 1
1 3

)
, we then compute(

2 1 1 0
1 3 0 1

)
R1−2R2→R1−−−−−−−→

(
0 −5 1 −2
1 3 0 1

)
R1↔R2−−−−→

(
1 3 0 1
0 −5 1 −2

)
R1+ 3

5
R2→R1−−−−−−−−→

R2→− 1
5
R2

(
1 0 3

5
1− 6

5
0 1 −1

5
2
5

)

and hence A−1 =

(
3
5

1− 6
5

−1
5

2
5

)
.
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1.5. Systems of Linear Equations. As stated earlier, a system of linear equations

a11x1 + a12x2 + · · ·+ a1mxm = b1

... =
...

an1x1 + an2x2 + · · ·+ anmxm = bn.

can be compactly written as
Ax = b

where A =

a11 . . . a1m
... . . . ...
an1 . . . anm

, x =

x1
...
xm

 , b =

b1
...
bn

.

The system of equations can have different number of solutions depending on n,m,A, b. Here are few
cases you need to understand

(1) If b = 0, then there is alway at least one solution, namely x = 0 and the space of all solutions is
a linear subspace of Rm.
(a) If m > n, then there are non-trivial solutions,
(b) If m = n, then there are non-trivial solutions if and only if detA = 0

(2) If n = m, and detA 6= 0 then there is a unique solution given by

x = A−1b.

In general, to solve this system of equations, one “row reduces” the equation until it is a form that is
easy to solve (A is in Echelon form). We will demonstrate this with an example. Consider the following
system of equations (

1 2
3 4

)(
x1

x2

)
=

(
1
1

)
.

Row reduction gives us (
1 2 1
3 4 1

)
R2−3R1→R2−−−−−−−→

(
1 2 1
0 −2 −2

)
and in particular the original system of equations is equivalent to(

1 2
0 −2

)(
x1

x2

)
=

(
1
−2

)
which is easy to solve: from the second row we get

−2x2 = −2 =⇒ x2 = 1

and from the first row we get

x1 + 2x2 = 1 =⇒ x1 = 1− 2x2 = 1− 2 = −1

and the solution is x =

(
−1
1

)
.

As another example, consider (
1 2
3 6

)(
x1

x2

)
=

(
1
2

)
Row reduction gives us (

1 2 1
3 6 2

)
R2−3R1→R2−−−−−−−→

(
1 2 1
0 0 −1

)
whose bottom row reads 0 = −1 and in particular there are no solutions to the original system of
equations.

As another example, consider (
1 2
3 6

)(
x1

x2

)
=

(
1
3

)
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Row reduction gives us (
1 2 1
3 6 2

)
R2−3R1→R2−−−−−−−→

(
1 2 1
0 0 0

)
Here, there are no inconsistencies, so a solution exists. Moreover, since one of the rows is exactly zero,
the space of solutions has dimension greater than 0. In this case, the columns with no leading terms
correspond to free variables which can be set to arbitrary constants. In our example, x2 is a free variable
and we can set it to equal to an arbitrary constant x2 = c with c ∈ R. The first row then gives us

x1 + 2x2 = 1 =⇒ x1 = 1− 2x2 = 1− 2c

and the set of solutions is

x =

(
1− 2c
c

)
=

(
1
0

)
+ c

(
−2
1

)
with c ∈ R. Remark: in the matrix 

1 2 4 2
0 0 1 2
0 0 0 0
0 0 0 0


columns 2 and 4 correspond to free variables.

1.6. Matrix Diagonalization. The section is important for the section on linear systems of differential
equations.

Definition 14. Given a matrix A, an eigenvector of A is a non-zero column vector v such that

Av = λv

where λ ∈ R. Equivalently it is a non-zero vector such that

(A− λI)v = 0.

The number λ is called the corresponding eigenvalue.

In order to find the eigenvectors and corresponding eigenvalues of a matrix A, we first find all λ such
that

(A− λI)v = 0

has a non-trivial solution, or equivalently such that

det(A− λI) = 0.

This is called the characteristic polynomial (it has degree n). After we find all such λ, we solve the
system of equations

(A− λI)v = 0

to find all eigenvectors corresponding to different λs.
If λ0 is a root of det(A − λI) = 0 with multiplicity k, we would like to find k linearly independent

eigenvectors corresponding to λ0. Sometimes there are strictly fewer linearly independent vectors cor-
responding to the eigenvalue λ0. In this case we will look for generalized eigenvectors corresponding to
λ0.

Definition 15. A generalized eigenvector of A corresponding to an eigenvalue λ0 is a vector v satisfying

(A− λI)lv = 0

for some l.
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Example 16. Consider the matrix

A =

2 1 0
0 2 0
0 0 1

 .

The characteristic polynomial is
det(A− λI) = 0

(2− λ)2(1− λ) = 0

whose roots are λ1 = 1, λ2 = 2 with multiplicity 2 for eigenvalue λ2.
To find eigenvectors corresponding to λ1, we solve

(A− λ1) v = 01 1 0
0 1 0
0 0 0

 v = 0.

The space of solutions is one dimensional with a basis

v1 =

0
0
1

 .

To find eigenvectors corresponding to λ2, we solve

(A− λ2) v = 00 1 0
0 0 0
0 0 −1

 v = 0.

The space of solutions is again one dimensional with a basis

v2 =

1
0
0

 .

Since λ2 had multiplicity 2 and only 1 eigenvector, we look for a generalized vector: v such that

(A− λ2)2 v = 00 0 0
0 0 0
0 0 1

 v = 0.

The space of solutions is 2-dimensional with a basis given by

v2 =

1
0
0

 , v′2 =

0
1
0

 .

In particular, the eigenvector v2 is also a generalized eigenvector of A. The set {v1, v2, v
′
2} is a basis of

R3 consisting of generalized eigenvectors.
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2. Systems of Differential Equations

2.1. Existence/Uniqueness.

Theorem 17. Let A be a n × n matrix, x0 =

x0
1
...
x0
n

 and t0 ∈ R. Then there exists a unique solution

x(t) to the initial value problem
dx

dt
(t) = Ax(t); x(t0) = x0

which is defined for all t ∈ R.

Here, x(t) =


x1(t)
x2(t)
...

xn(t)

 is a Rn valued function on R i.e. to each t ∈ R it assigns the column vector


x1(t)
x2(t)
...

xn(t)

 in Rn. We will also use notation ẋ for dx
dt

in the future.

A consequence of the above theorem is that the space of solutions to the system of differential equations

(2.1) ẋ(t) = Ax(t)

is n dimensional. To see this, fix t0 ∈ R and note that

x(t) 7→ x(t0)

is a one-to-one correspondence between the space of solutions and the vector space Rn. Indeed, given
an element x0 ∈ Rn, the theorem gives the unique solution x(t) to equation 2.1 with the initial value
x(t0) = x0.

Another consequence of the theorem is that for any t0 ∈ R , a set of solutions {x1, . . . , xk} is linearly
independent if and only if the set of vectors {x1(t0), . . . , xk(t0)} is linearly independent.

2.2. Finding Solutions. To find the space of solutions of equation 2.1, we need to find n linearly
independent solutions. For that, we find the eigenvalues and (generalized) eigenvectors of the matrix A
as in 1.6.

An eigenvector v with an eigenvector λ gives as a solution

x(t) = eλtv

since
Ax(t) = Aeλtv = eλtAv = eλt(λv) = ẋ(t).

If the characteristic polynomial of A has complex roots, the above argument still holds, but now the
solution

x(t) = eλtv

is complex valued. Since A has real coefficients, both real and imaginary part of x(t) are solutions of
equation 2.1. If λ = α + iβ and v = u+ iw where α, β ∈ R and v, w ∈ Rn, then

x(t) = e(α+iβ)t(u+ iw) = eαt(cos βt+ i sin βt)(u+ iw)

= eαt (cos βt · u− sin βt · w + i (sin βt · u+ cos βt · w))

and we get two real solutions

x1(t) = eαt (cos βt · u− sin βt · w)

x2(t) = eαt (sin βt · u+ cos βt · w) .
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Since λ is a complex root, its conjugate λ̄ is also a root and the above produces two linearly independent
real solutions corresponding to two roots λ, λ̄. (the two real solutions x1, x2 form a different basis for
the complex span of the complex solutions eλtv, eλ̄tv̄).

If the characteristic polynomial has repeated roots, there might not be n linearly independent eigen-
vectors of A, but we can always find n linearly independent generalized eigenvectors of A. Given a
generalized eigenvector v corresponding to an eigenvalue λ, i.e. satisfying

(A− λI)kv = 0

for some k ∈ N, a solution of equation 2.1 is

x(t) = eλt(v + t(A− λ)v +
t2(A− λ)2v

2!
+ · · ·+ tk−1(A− λ)k−1v

(k − 1)!
).

In the simplest case where (A− λI)2v = 0, this takes the form

x(t) = eλt(v + t(A− λ)v).

Note that an eigenvector is also a generalized eigenvector and this solution coincides with the one written
before for eigenvectors since in that case the term (A− λ)v vanishes.

3. PDEs

3.1. Fourier Series.

Theorem 18. Let f be a function on [−l, l] such that both f and f ′ are piecewise continuous. Define
constants an, bn for n > 0 and a0 by

an =
1

l

ˆ l

−l
f(x) cos

nπx

l
dx

bn =
1

l

ˆ l

−l
f(x) sin

nπx

l
dx.

We then have

f(x) =
a0

2
+
∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
.

To be more precise, the series converges for all values of x ∈ [−l, l] and equals f(x) if f is continuous
at x. (look on pg 488 for the behavior at points of discontinuity.)

For the solutions of the heat equation and the wave equation we will need to expand a function in
terms of only sine functions or only cosine functions. Below are the corresponding statements which are
consequences of the above theorem.

Theorem 19. Let f be a function on [0, l] such that both f and f ′ are piecewise continuous. Define
constants an for n ≥ 0 by

an =
2

l

ˆ l

0

f(x) cos
nπx

l
dx.

Then

f(x) =
a0

2
+
∞∑
n=1

an cos
nπx

l
.

To be more precise, the series converges for all values of x ∈ [0, l] and equals f(x) if f is continuous at
x.
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Theorem 20. Let f be a function on [0, l] such that both f and f ′ are piecewise continuous. Define
constants bn for n > 0 by

bn =
2

l

ˆ l

0

f(x) sin
nπx

l
dx.

Then

f(x) =
∞∑
n=1

bn sin
nπx

l
.

To be more precise, the series converges for all values of x ∈ [0, l] and equals f(x) if f is continuous at
x.
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Look for u(x, t) where 0 ≤ x ≤ l, 0 ≤ t

Heat equation: Wave equation:
∂u
∂t

= α2 ∂2u
∂x2

∂2u
∂t2

= c2 ∂2u
∂x2

Boundary Conditions:
Dirichlet: u(0, t) = u(l, t) = 0 for all t

Neumann: ∂u
∂x

(0, t) = ∂u
∂x

(l, t) = 0 for all t
Solutions:

un = Xn(x)Tn(t) un = Xn(x)Tn(t)

Tn(t) = e
−α2n2π2

l2
t u′n = Xn(x)T ′n(t)

Tn(t) = cos( cnπt
l

)
T ′n(t) = sin( cnπt

l
)

Dirichlet Neumann Dirichlet Neumann
n ≥ 1, Xn(x) = sin nπx

l
n ≥ 0, Xn(x) = cos nπx

l
n ≥ 1, Xn(x) = sin nπx

l
n ≥ 0, Xn(x) = cos nπx

l

General Solution General Solution
u(x, t) =

∑
n anun(x, t) u(x, t) =

∑
n anun(x, t) + bnu

′
n(x, t)

Initial value problem Initial value problem
u(x, 0) = f(x) u(x, 0) = f(x)

∂u
∂t

(x, 0) = g(x)∑∞
n=1 an sin nπx

l
= f(x)

∑∞
n=0 an cos nπx

l
= f(x)

∑∞
n=1 an sin nπx

l
= f(x)

∑∞
n=0 an cos nπx

l
= f(x)∑∞

n=1 bn
cnπ
l

sin nπx
l

= g(x)
∑∞

n=0 bn
cnπ
l

cos nπx
l

= g(x)

Table 1.

3.2. Heat/Wave Equations.
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