## FINAL DIFFERENTIAL EQUATIONS SUMMARY

(1) Linear Algebra
(a) Vector Spaces

- Definition
- Subspaces
- Linear Independence
- Linear Span
- Dimension
- Basis
(b) Matrices
- Matrix Multiplication
- Matrices $=$ Linear Transformations
(c) Determinants
- Definition
- Row reduction
- Row/Column expansion
(d) Matrix Inverse
- Row reduction
- $A^{-1}=\frac{\operatorname{adj}(\mathrm{A})}{\operatorname{det} A}$
(e) System of linear equations $(A x=b)$
- Row reduction
- Relation to $\operatorname{det} A$
(f) Eigenvalues/Eigenvectors
- Characteristic Polynomial $(\operatorname{det}(A-\lambda I)=0)$
- Generalized Eigenvectors
(2) Systems of Differential Equations $(\dot{x}=A x)$
(a) Existence/Uniqueness
- Linear Space of Solutions
- Linear Independence of Solutions
(b) Finding Solutions
- Distinct Real Eigenvalues
- Distinct Complex Eigenvalues
- Repeated Real Eigenvalues
(3) PDEs
(a) Fourier Series
(b) Heat/Wave Equations
- Boundary Conditions
- Dirichlet
- Neumann
- General Solution
- Heat eq. Dirichlet
- Heat eq. Neumann
- Wave eq. Dirichlet
- Wave eq. Neumann
- Initial Value Problem


## 1. Linear Algebra

### 1.1. Vector Spaces .

Definition 1. A vector space over $\mathbb{R}$ is a set $V$ with operations

$$
\begin{aligned}
& +: V \times V \rightarrow V \\
& \cdot: \mathbb{R} \times V \rightarrow V
\end{aligned}
$$

satisfying for all $x, y, z \in V, a, b \in \mathbb{R}$

- $x+y=y+x$
- $x+(y+z)=(x+y)+z$
- There exists a unique element $0 \in V$ with that property that $0+x=x$.
- there is a unique element $-x \in V$ such that $x+(-x)=0$.
- $1 \cdot x=x$
- $(a b) \cdot x=a \cdot(b \cdot x)$
- $a \cdot(x+y)=a \cdot x+a \cdot y$
- $(a+b) \cdot x=a \cdot x+b \cdot x$

Definition 2. A linear subspace of a vector space $V$, is a subset $W \subset V$ which is closed under addition and multiplication, i.e. for all $w_{1}, w_{2} \in W$ and $a \in \mathbb{R}, w_{1}+w_{2} \in W$ and $a w_{1} \in W$. Equivalently, it is a subset $W \subset V$ which is itself a vector space under the same operations,$+ \cdot$ as $V$.
Definition 3. A set of vectors $\left\{e_{1}, e_{2} \ldots, e_{n}\right\} \subset V$ is called linearly independent if the linear equation

$$
c_{1} e_{1}+c_{2} e_{2}+\ldots c_{n} e_{n}=0
$$

where $c_{1}, \ldots, c_{n} \in \mathbb{R}$ has a unique solution $c_{1}=c_{2}=\cdots=c_{n}=0$. Equivalently, a set $\left\{e_{1}, e_{2} \ldots, e_{n}\right\}$ is linearly independent if none of the vectors $e_{i}$ is a linear combination of the others.
Definition 4. Linear span of a set of vector $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ is the set of vector $w$ of the form

$$
w=c_{1} e_{1}+\cdots+c_{n} e_{e}
$$

with $c_{1}, \ldots, c_{n} \in \mathbb{R}$. In words, it's the set of vectors expressible as a linear combination of vectors $e_{1}, \ldots, e_{n}$.

Definition 5. The dimension of a vector space $V$ is the least number $n$ such that there are $n$ vectors $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ which span $V$.

Theorem 6. Let $V$ be a vector space. The following are equivalent

- The dimension of $V$ is $n$.
- The maximal number of linearly independent vectors in $V$ is $n$.
- There exists a linearly independent set of vectors $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ which spans $V$.
- Any set $\left\{e_{1}, \ldots, e_{n}\right\} \subset V$ of linearly independent vectors spans $V$.

Definition 7. Let $V$ be a vector space of dimension $n$. A set $\left\{e_{1}, \ldots, e_{n}\right\}$ of linearly independent vectors is called a basis of $V$.

Theorem 8. Let $V$ be a vector space and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of $V$. Then for any vector $v \in V$ there are unique $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
v=c_{1} e_{1}+\cdots+c_{n} e_{n}
$$

Example 9. The most important example to understand is the vector space

$$
V=\left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, x_{i} \in \mathbb{R}\right\}
$$

which is denoted $\mathbb{R}^{n}$. The set $\left\{e_{1}, \ldots, e_{n}\right\}$ where

$$
e_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \longleftarrow \text { i'th row }
$$

is a basis of $\mathbb{R}^{n}$. Indeed, $\left\{e_{1}, \ldots, e_{n}\right\}$ is linearly independent since

$$
c_{1} e_{1}+\cdots+c_{n} e_{n}=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=0=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

if and only if $c_{1}=\cdots=c_{n}=0$. Also, $\left\{e_{1}, \ldots, e_{n}\right\}$ spans $\mathbb{R}^{n}$ since for any $v=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$, we have

$$
v=x_{1} e_{1}+\cdots+x_{n} e_{n} .
$$

In particular, the dimension of $\mathbb{R}^{n}$ is $n$. A set of vectors $\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}^{n}$ where $f_{i}=\left(\begin{array}{c}f_{1 i} \\ f_{2 i} \\ \vdots \\ f_{n i}\end{array}\right)$ is linearly independent if the equation

$$
c_{1} f_{1}+\ldots c_{m} f_{m}=0
$$

has a unique solution for $c_{1}, \ldots, c_{m}$. The left hand side is

$$
\left(\begin{array}{c}
c_{1} f_{11}+c_{2} f_{12} \cdots+c_{m} f_{1 m} \\
c_{1} f_{21}+c_{2} f_{22}+\cdots+c_{m} f_{2 m} \\
\vdots \\
c_{1} f_{n 1}+c_{2} f_{n 2}+\ldots c_{m} f_{n m}
\end{array}\right)=\left(\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \ddots & \ddots & \vdots \\
f_{n 1} & f_{n 2} & \ldots & f_{n m}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) .
$$

If we denote the matrix $\left(\begin{array}{cccc}f_{11} & f_{12} & \ldots & f_{1 m} \\ f_{21} & f_{22} & \ldots & f_{2 m} \\ \vdots & \ddots & \ddots & \vdots \\ f_{n 1} & f_{n 2} & \ldots & f_{n m}\end{array}\right)$ by by $F$, then the set $\left\{f_{1}, \ldots, f_{m}\right\}$ is linearly independent
if and only if the system of equations

$$
F\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)=0
$$

has a unique solution.
For example the set of vectors $\left\{\binom{2}{3},\binom{1}{3}\right\} \subset \mathbb{R}^{2}$ are linearly independent since if

$$
c_{1}\binom{2}{3}+c_{2}\binom{1}{3}=0
$$

then

$$
\begin{aligned}
2 c_{1}+c_{2} & =0 \\
3 c_{1}+3 c_{2} & =0 .
\end{aligned}
$$

From the second equation we get $c_{1}=-c_{2}$ and plugging it into first equation we get $-2 c_{2}+c_{2}=0$ which implies $c_{2}=c_{1}=0$. On the other hand, the set $\left\{\binom{1}{3},\binom{2}{6}\right\}$ is linearly dependent since

$$
2\binom{1}{3}-\binom{2}{6}=0
$$

The subset

$$
\left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, 3 x_{1}+2 x_{2}=0\right\}
$$

is a linear subspace of $\mathbb{R}^{n}$ while the subspaces

$$
\begin{aligned}
& \left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, 3 x_{1}+2 x_{2}=3\right\}, \\
& \left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, 3 x_{1}^{2}+2 x_{2}=0\right\}
\end{aligned}
$$

are not linear subspaces.
1.2. Matrices. An $n \times m$ matrix is a collection of $n m$ numbers arranged into $n$ rows and $m$ columns. Given a matrix $A$, we denote the entry in the $i$ 'th row and $j$ 'th column by $A_{i j}$.

Definition 10. Given an $n \times m$ matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right)
$$

and an $n^{\prime} \times m^{\prime}$ matrix

$$
B=\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 m^{\prime}} \\
\vdots & \ddots & \vdots \\
b_{n^{\prime} 1} & \ldots & b_{n^{\prime} m^{\prime}}
\end{array}\right)
$$

the product $A B$ is defined only if $m=n^{\prime}$ in which case $A B$ is a $n \times m^{\prime}$ matrix with entries

$$
\{A B\}_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

Pictorially, $\{A B\}_{i j}$ is the scalar product of $i^{\prime}$ th row of $A$ and $j^{\prime}$ th column of $B$.

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{i 1} & \ldots & a_{i m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{ccccc}
b_{11} & \ldots & b_{1 j} & \ldots & b_{1 m^{\prime}} \\
\vdots & \ddots & \ldots & \ddots & \vdots \\
b_{n^{\prime} 1} & \ldots & b_{n^{\prime} j} & \ldots & b_{n^{\prime} m^{\prime}}
\end{array}\right)
$$

Of particular importance is the case where $B$ is a $m \times 1$ matrix, or in other words a column vector of height $m$, or an element of $\mathbb{R}^{m}$. In that case $A B$ is a column vector of height $n$. Pictorially In particular,


Figure 1.1.
we can think of a $n \times m$ matrix as a transformation that sends elements of $\mathbb{R}^{m}$ to elements of $\mathbb{R}^{n}$.
Matrix multiplication can be used to concisely express a system of linear equations. In particular,

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

is a short hand for the following system of equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 m} x_{m} & =b_{1} \\
\vdots & =\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n m} x_{m} & =b_{n} .
\end{aligned}
$$

### 1.3. Determinants.

Definition 11. The determinant of a $n \times n$ matrix $A$ is defined by

$$
\operatorname{det} A=\sum_{j_{1}, \ldots, j_{n}} \epsilon_{j_{1} \ldots j_{n}} A_{1 j_{1}} A_{2 j_{2}} \ldots A_{n j_{n}}
$$

where the sum is over permutation, i.e. $j_{k} \neq j_{l}$ if $k \neq l$, and $\epsilon_{j_{1} \ldots j_{n}}$ is the sign of the permutation.
For $n=2,3$ we have

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g .
\end{gathered}
$$

For $n \geq 4$, the exact formula becomes cumbersome. There are two methods for simplifying the computation of determinant: row reduction and expansion with respect to a row or a column.
Row/Column expansion: Denote by $A(i \mid j)$ the matrix one obtains from $A$ by removing $i$ 'th row and $j$ 'th column. Then for a fixed $k$ we have

$$
\operatorname{det} A=\sum_{l=1}^{n}(-1)^{l+k} A_{l k} \operatorname{det} A(l \mid k)=\sum_{l=1}^{n}(-1)^{l+k} A_{k l} \operatorname{det} A(k \mid l)
$$

where the expression $\sum_{l=1}^{n}(-1)^{l+k} A_{l k} \operatorname{det} A(l \mid k)$ corresponds to expansion with respect to $k^{\prime}$ th column and the expression $\sum_{l=1}^{n}(-1)^{l+k} A_{k l}$ det $A(k \mid l)$ corresponds to expansion with respect to $k$ 'th row. As an example, we have

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 3 \\
5 & 4 & 2
\end{array}\right)=1 \operatorname{det}\left(\begin{array}{ll}
5 & 3 \\
4 & 2
\end{array}\right)-4 \operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
4 & 2
\end{array}\right)+5 \operatorname{det}\left(\begin{array}{ll}
2 & 3 \\
5 & 3
\end{array}\right) .
$$

Row reduction. We use the following properties of the determinant function

- If you interchange two rows(columns), the value of the determinant changes sign
- If you add a multiple of a row(column) to another row(column) then determinant does not change
- If you multiply any row(column) by a constant, the determinant is multiplies by the same constant
- $\operatorname{det}\left(\begin{array}{cccc}a_{11} & * & * & * \\ 0 & a_{22} & * & * \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & a_{n n}\end{array}\right)=a_{11} a_{22} \ldots a_{n n}$

As an example we have

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 4 \\
3 & 2 & 2
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 2 & -4
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & -4
\end{array}\right)=-4
$$

### 1.4. Matrix Inverse.

Definition 12. The inverse of a $n \times n$ matrix $A$ is another matrix, which we denote $A^{-1}$ such that

$$
A^{-1} A=A A^{-1}=I
$$

where

$$
I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is called the identity matrix. (Note that $A I=I A=A$ for all $n \times n$ matrices $A$ )
Not all matrices are invertible, but if $A$ is invertible, then the inverse $A^{-1}$ is unique.
Theorem 13. A matrix $A$ is invertible if and only if $\operatorname{det} A \neq 0$.
There is an explicit formula for the inverse of a matrix. Let $\operatorname{adj}(A)$ be the matrix defined by

$$
\operatorname{adj}(A)_{i j}=(-1)^{i+j} \operatorname{det} A(j \mid i)
$$

where $A(j \mid i)$ is defined in subsection 1.3. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj}(A)
$$

As one might notice, using this formula requires computing a lot of determinants.
Another way to find an inverse of a matrix is to find a sequence of row operations that transforms the matrix $A$ into the identity matrix and then apply the same row operations to the identity matrix. This works since "applying a sequence of row operations" corresponds to multiplication of $A$ by some matrix $B$ on the left. If the row operations transform $A$ into $I$, then $B A=I$ (hence $B=A^{-1}$ ) and applying them to the identity matrix we get $B I=B$. In practice we apply the row operation to $A$ and $I$ at the same time. As an example consider the problem of finding $A^{-1}$ where $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$, we then compute
$\left(\begin{array}{ll|ll}2 & 1 & 1 & 0 \\ 1 & 3 & 0 & 1\end{array}\right) \xrightarrow{R_{1}-2 R_{2} \rightarrow R_{1}}\left(\begin{array}{cc|cc}0 & -5 & 1 & -2 \\ 1 & 3 & 0 & 1\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|cc}1 & 3 & 0 & 1 \\ 0 & -5 & 1 & -2\end{array}\right) \xrightarrow[R_{2} \rightarrow-\frac{1}{5} R_{2}]{R_{1}+\frac{3}{5} R_{2} \rightarrow R_{1}}\left(\begin{array}{cc|ccc}1 & 0 & \frac{3}{5} & 1-\frac{6}{5} \\ 0 & 1 & -\frac{1}{5} & \frac{2}{5}\end{array}\right)$
and hence $A^{-1}=\left(\begin{array}{cc}\frac{3}{5} & 1-\frac{6}{5} \\ -\frac{1}{5} & \frac{2}{5}\end{array}\right)$.
1.5. Systems of Linear Equations. As stated earlier, a system of linear equations

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 m} x_{m} & =b_{1} \\
\vdots & =\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n m} x_{m} & =b_{n} .
\end{aligned}
$$

can be compactly written as
where $A=\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 m} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \ldots & a_{n m}\end{array}\right), x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right), b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$.
The system of equations can have different number of solutions depending on $n, m, A, b$. Here are few cases you need to understand
(1) If $b=0$, then there is alway at least one solution, namely $x=0$ and the space of all solutions is a linear subspace of $\mathbb{R}^{m}$.
(a) If $m>n$, then there are non-trivial solutions,
(b) If $m=n$, then there are non-trivial solutions if and only if $\operatorname{det} A=0$
(2) If $n=m$, and $\operatorname{det} A \neq 0$ then there is a unique solution given by

$$
x=A^{-1} b .
$$

In general, to solve this system of equations, one "row reduces" the equation until it is a form that is easy to solve ( $A$ is in Echelon form). We will demonstrate this with an example. Consider the following system of equations

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{1}
$$

Row reduction gives us

$$
\left(\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 4 & 1
\end{array}\right) \xrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & -2 & -2
\end{array}\right)
$$

and in particular the original system of equations is equivalent to

$$
\left(\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{-2}
$$

which is easy to solve: from the second row we get

$$
-2 x_{2}=-2 \Longrightarrow x_{2}=1
$$

and from the first row we get

$$
x_{1}+2 x_{2}=1 \Longrightarrow x_{1}=1-2 x_{2}=1-2=-1
$$

and the solution is $x=\binom{-1}{1}$.
As another example, consider

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{2}
$$

Row reduction gives us

$$
\left(\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 6 & 2
\end{array}\right) \xrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

whose bottom row reads $0=-1$ and in particular there are no solutions to the original system of equations.

As another example, consider

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{3}
$$

Row reduction gives us

$$
\left(\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 6 & 2
\end{array}\right) \xrightarrow{R_{2}-3 R_{1} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Here, there are no inconsistencies, so a solution exists. Moreover, since one of the rows is exactly zero, the space of solutions has dimension greater than 0 . In this case, the columns with no leading terms correspond to free variables which can be set to arbitrary constants. In our example, $x_{2}$ is a free variable and we can set it to equal to an arbitrary constant $x_{2}=c$ with $c \in \mathbb{R}$. The first row then gives us

$$
x_{1}+2 x_{2}=1 \Longrightarrow x_{1}=1-2 x_{2}=1-2 c
$$

and the set of solutions is

$$
x=\binom{1-2 c}{c}=\binom{1}{0}+c\binom{-2}{1}
$$

with $c \in \mathbb{R}$. Remark: in the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

columns 2 and 4 correspond to free variables.
1.6. Matrix Diagonalization. The section is important for the section on linear systems of differential equations.

Definition 14. Given a matrix $A$, an eigenvector of $A$ is a non-zero column vector $v$ such that

$$
A v=\lambda v
$$

where $\lambda \in \mathbb{R}$. Equivalently it is a non-zero vector such that

$$
(A-\lambda I) v=0 .
$$

The number $\lambda$ is called the corresponding eigenvalue.
In order to find the eigenvectors and corresponding eigenvalues of a matrix $A$, we first find all $\lambda$ such that

$$
(A-\lambda I) v=0
$$

has a non-trivial solution, or equivalently such that

$$
\operatorname{det}(A-\lambda I)=0
$$

This is called the characteristic polynomial (it has degree $n$ ). After we find all such $\lambda$, we solve the system of equations

$$
(A-\lambda I) v=0
$$

to find all eigenvectors corresponding to different $\lambda \mathrm{s}$.
If $\lambda_{0}$ is a root of $\operatorname{det}(A-\lambda I)=0$ with multiplicity $k$, we would like to find $k$ linearly independent eigenvectors corresponding to $\lambda_{0}$. Sometimes there are strictly fewer linearly independent vectors corresponding to the eigenvalue $\lambda_{0}$. In this case we will look for generalized eigenvectors corresponding to $\lambda_{0}$.
Definition 15. A generalized eigenvector of $A$ corresponding to an eigenvalue $\lambda_{0}$ is a vector $v$ satisfying

$$
(A-\lambda I)^{l} v=0
$$

for some $l$.

Example 16. Consider the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The characteristic polynomial is

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
(2-\lambda)^{2}(1-\lambda)=0
\end{gathered}
$$

whose roots are $\lambda_{1}=1, \lambda_{2}=2$ with multiplicity 2 for eigenvalue $\lambda_{2}$.
To find eigenvectors corresponding to $\lambda_{1}$, we solve

$$
\begin{gathered}
\left(A-\lambda_{1}\right) v=0 \\
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) v=0 .
\end{gathered}
$$

The space of solutions is one dimensional with a basis

$$
v_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

To find eigenvectors corresponding to $\lambda_{2}$, we solve

$$
\begin{gathered}
\left(A-\lambda_{2}\right) v=0 \\
\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) v=0 .
\end{gathered}
$$

The space of solutions is again one dimensional with a basis

$$
v_{2}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Since $\lambda_{2}$ had multiplicity 2 and only 1 eigenvector, we look for a generalized vector: $v$ such that

$$
\begin{aligned}
& \left(A-\lambda_{2}\right)^{2} v=0 \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) v=0
\end{aligned}
$$

The space of solutions is 2-dimensional with a basis given by

$$
v_{2}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), v_{2}^{\prime}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

In particular, the eigenvector $v_{2}$ is also a generalized eigenvector of $A$. The set $\left\{v_{1}, v_{2}, v_{2}^{\prime}\right\}$ is a basis of $\mathbb{R}^{3}$ consisting of generalized eigenvectors.

## 2. Systems of Differential Equations

### 2.1. Existence/Uniqueness.

Theorem 17. Let $A$ be a $n \times n$ matrix, $x^{0}=\left(\begin{array}{c}x_{1}^{0} \\ \vdots \\ x_{n}^{0}\end{array}\right)$ and $t_{0} \in \mathbb{R}$. Then there exists a unique solution $x(t)$ to the initial value problem

$$
\frac{d x}{d t}(t)=A x(t) ; \quad x\left(t_{0}\right)=x^{0}
$$

which is defined for all $t \in \mathbb{R}$.
Here, $x(t)=\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t)\end{array}\right)$ is a $\mathbb{R}^{n}$ valued function on $\mathbb{R}$ i.e. to each $t \in \mathbb{R}$ it assigns the column vector $\left(\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t)\end{array}\right)$ in $\mathbb{R}^{n}$. We will also use notation $\dot{x}$ for $\frac{d x}{d t}$ in the future.

A consequence of the above theorem is that the space of solutions to the system of differential equations

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{2.1}
\end{equation*}
$$

is $n$ dimensional. To see this, fix $t_{0} \in \mathbb{R}$ and note that

$$
x(t) \mapsto x\left(t_{0}\right)
$$

is a one-to-one correspondence between the space of solutions and the vector space $\mathbb{R}^{n}$. Indeed, given an element $x^{0} \in \mathbb{R}^{n}$, the theorem gives the unique solution $x(t)$ to equation 2.1 with the initial value $x\left(t_{0}\right)=x^{0}$.

Another consequence of the theorem is that for any $t_{0} \in \mathbb{R}$, a set of solutions $\left\{x_{1}, \ldots, x_{k}\right\}$ is linearly independent if and only if the set of vectors $\left\{x_{1}\left(t_{0}\right), \ldots, x_{k}\left(t_{0}\right)\right\}$ is linearly independent.
2.2. Finding Solutions. To find the space of solutions of equation 2.1, we need to find $n$ linearly independent solutions. For that, we find the eigenvalues and (generalized) eigenvectors of the matrix $A$ as in 1.6 .

An eigenvector $v$ with an eigenvector $\lambda$ gives as a solution

$$
x(t)=e^{\lambda t} v
$$

since

$$
A x(t)=A e^{\lambda t} v=e^{\lambda t} A v=e^{\lambda t}(\lambda v)=\dot{x}(t)
$$

If the characteristic polynomial of $A$ has complex roots, the above argument still holds, but now the solution

$$
x(t)=e^{\lambda t} v
$$

is complex valued. Since $A$ has real coefficients, both real and imaginary part of $x(t)$ are solutions of equation 2.1. If $\lambda=\alpha+i \beta$ and $v=u+i w$ where $\alpha, \beta \in \mathbb{R}$ and $v, w \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
x(t) & =e^{(\alpha+i \beta) t}(u+i w)=e^{\alpha t}(\cos \beta t+i \sin \beta t)(u+i w) \\
& =e^{\alpha t}(\cos \beta t \cdot u-\sin \beta t \cdot w+i(\sin \beta t \cdot u+\cos \beta t \cdot w))
\end{aligned}
$$

and we get two real solutions

$$
\begin{aligned}
& x_{1}(t)=e^{\alpha t}(\cos \beta t \cdot u-\sin \beta t \cdot w) \\
& x_{2}(t)=e^{\alpha t}(\sin \beta t \cdot u+\cos \beta t \cdot w)
\end{aligned}
$$

Since $\lambda$ is a complex root, its conjugate $\bar{\lambda}$ is also a root and the above produces two linearly independent real solutions corresponding to two roots $\lambda, \bar{\lambda}$. (the two real solutions $x_{1}, x_{2}$ form a different basis for the complex span of the complex solutions $\left.e^{\lambda t} v, e^{\bar{\lambda} t} \bar{v}\right)$.

If the characteristic polynomial has repeated roots, there might not be $n$ linearly independent eigenvectors of $A$, but we can always find $n$ linearly independent generalized eigenvectors of $A$. Given a generalized eigenvector $v$ corresponding to an eigenvalue $\lambda$, i.e. satisfying

$$
(A-\lambda I)^{k} v=0
$$

for some $k \in \mathbb{N}$, a solution of equation $\underline{2.1}$ is

$$
x(t)=e^{\lambda t}\left(v+t(A-\lambda) v+\frac{t^{2}(A-\lambda)^{2} v}{2!}+\cdots+\frac{t^{k-1}(A-\lambda)^{k-1} v}{(k-1)!}\right)
$$

In the simplest case where $(A-\lambda I)^{2} v=0$, this takes the form

$$
x(t)=e^{\lambda t}(v+t(A-\lambda) v)
$$

Note that an eigenvector is also a generalized eigenvector and this solution coincides with the one written before for eigenvectors since in that case the term $(A-\lambda) v$ vanishes.

## 3. PDEs

### 3.1. Fourier Series.

Theorem 18. Let $f$ be a function on $[-l, l]$ such that both $f$ and $f^{\prime}$ are piecewise continuous. Define constants $a_{n}, b_{n}$ for $n>0$ and $a_{0}$ by

$$
\begin{aligned}
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x
\end{aligned}
$$

We then have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) .
$$

To be more precise, the series converges for all values of $x \in[-l, l]$ and equals $f(x)$ if $f$ is continuous at $x$. (look on pg 488 for the behavior at points of discontinuity.)

For the solutions of the heat equation and the wave equation we will need to expand a function in terms of only sine functions or only cosine functions. Below are the corresponding statements which are consequences of the above theorem.

Theorem 19. Let $f$ be a function on $[0, l]$ such that both $f$ and $f^{\prime}$ are piecewise continuous. Define constants $a_{n}$ for $n \geq 0$ by

$$
a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi x}{l} d x
$$

Then

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{l}
$$

To be more precise, the series converges for all values of $x \in[0, l]$ and equals $f(x)$ if $f$ is continuous at $x$.

Theorem 20. Let $f$ be a function on $[0, l]$ such that both $f$ and $f^{\prime}$ are piecewise continuous. Define constants $b_{n}$ for $n>0$ by

$$
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi x}{l} d x
$$

Then

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

To be more precise, the series converges for all values of $x \in[0, l]$ and equals $f(x)$ if $f$ is continuous at $x$.

Look for $u(x, t)$ where $0 \leq x \leq l, 0 \leq t$

| Heat equation: $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ | Wave equation:$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ |  |
| :---: | :---: | :---: |
| Boundary Conditions: <br> Dirichlet: $u(0, t)=u(l, t)=0$ for all $t$ Neumann: $\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(l, t)=0$ for all $t$ |  |  |
| Solutions: |  |  |
| $\begin{aligned} & u_{n}=X_{n}(x) T_{n}(t) \\ & T_{n}(t)=e^{\frac{-\alpha^{2} n^{2} \pi^{2}}{l^{2}} t} \end{aligned}$ | $\begin{aligned} & u_{n}=X_{n}(x) T_{n}(t) \\ & u_{n}^{\prime}=X_{n}(x) T_{n}^{\prime}(t) \\ & T_{n}(t)=\cos \left(\frac{c n \pi t}{l}\right) \\ & T_{n}^{\prime}(t)=\sin \left(\frac{c n \pi t}{l}\right) \end{aligned}$ |  |
| Dirichlet $\quad$ Neumann | Dirichlet | Neumann |
| $n \geq 1, X_{n}(x)=\sin \frac{n \pi x}{l} \quad n \geq 0, X_{n}(x)=\cos \frac{n \pi x}{l}$ | $n \geq 1, X_{n}(x)=\sin \frac{n \pi x}{l}$ | $n \geq 0, X_{n}(x)=\cos \frac{n \pi x}{l}$ |
| $\begin{gathered} \text { General Solution } \\ u(x, t)=\sum_{n} a_{n} u_{n}(x, t) \end{gathered}$ | $u(x, t)=\sum_{n} a_{n} u_{n}(x, t)+b_{n} u_{n}^{\prime}(x, t)$ |  |
| Initial value problem $u(x, 0)=f(x)$ | Initial value problem$\begin{aligned} & u(x, 0)=f(x) \\ & \frac{\partial u}{\partial t}(x, 0)=g(x) \end{aligned}$ |  |
| $\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{l}=f(x) \quad \sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{l}=f(x)$ | $\begin{gathered} \sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{l}=f(x) \\ \sum_{n=1}^{\infty} b_{n} \frac{c n \pi}{l} \sin \frac{n \pi x}{l}=g(x) \end{gathered}$ | $\begin{gathered} \sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{l}=f(x) \\ \sum_{n=0}^{\infty} b_{n} \frac{c n \pi}{l} \cos \frac{n \pi x}{l}=g(x) \end{gathered}$ |

TABLE 1.

### 3.2. Heat/Wave Equations.

